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Preface

Chance-constrained programming can best be described as
an attempt to optimally allocate resources in situatlons
where the decision maker ils faced with rlisk and uncertalnty.
It can be a valuable tool for the decision maker since 1t
glves him direct control over some of this risk. In wriilng
this thesis, I have attempted to givae the analyst a review of
the fundamental theory of chance~constrained programming.

The thesls, however, should not be considered a literature
search or a review of all the developments and applications
of thils theory, but it should give the analyst a thorough

introduction to the subject, one which can be used to solve
most problems that an analyst might encounter in this area.

However, this thesis does introduce a new distribution
free approach to chance-constrained programuming which was
developed by R. A. Agnew. I would like to express my personal
appreclation to Dr. Agnew for sharing these developments with
me and also for the aid he has given me in the preparation
of this paper. However, I want to point out that any errors
which might appear in this thesis are solely the responsi-
bility of the author.

Finally, I would like to express my sincerest appre-
ciation to my wife, Dianne, for enduring the neglect that

resulted from this effort,

11
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Abstract

This thesls is concerned with the development of
certainty or deterministic equivalent nonlinear programming
models from chance-constrained programming models, It
contains a review of some of the historical developments in
thls area which were made by Charnes and Cooper, Kataoka,
Miller and Wagner, Hilller, and Sengupta. The thesis intro-
duces a new, distfibution free approach to chance-constralined
programming which can be used with both single and joint
chance constraints., Finally, the distribution frec chance-
constrained model is applied to the economic problem of input-

output analysis.
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Chapter I

Introduction

Background Information

Throughout history, mankind has been concerned with the
problem of optimal allocation of limited resources among’
competing activities., The problem has been widespread. Gen-'
erals have asked the question of hhether'their chances of

victory would be greater if ti.y initially committed a

division to combat or if they held that division in reserve . 3
f to be utilized at a later stage in the battle. Farmers: have
f wondered whether their return would be greater if they planted
; only corn, only wheat, or some mix of the two crops. Like-
C b wise, entrepreneurs have continuallj'searchéd for more effi-

cient ways of production in order that they might increase’ |

profits. To ald man in hls search for answers to these

questions, the sclences of economics, operations research, and ’ '§ﬁ

T L R e e 1

E systems analysis were developed; and it is from these sciénces

ST Al
1

— v

that man has gotten the very valuable tool of linear pro-

Eea

ey
pony

gramming. .
Linear programming was initially developed by George B,

PR e et

il

Dantzig in 1947 as a technique for plamming the diversified

TR

Pragvacs

activities of the U. S, Air Force, 1In any operating period

e g

the Air Force has many activities such as logistics, training,

maintenance, and operations which have to be coordinated in
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order to achieve specific goals. Thus linear progranming
addresses the prohlem of setting optimal levels for these
activitieé._ Mathematically, the linear programming model is

normglly formulatqd in the roilowing manner
' : n

| maiimize Ej =1 chJ
éubjéct to- Ej 2 1 aijxj < bi; 1 =1, 2, «ae, m
1 ‘ xj 20, =12, ..., n,

‘ whqsre-x3 is the j-th decicion variable, i.e, the level that

the decision maker choqses to set for the j-th input, product,

. or the j-th cbmponent of whatever the decision maker controls,

and the ¢, a, , andzbilare known constants, Such a model,
as formulaﬁed, might carry the economic. interpretation that
a firm which utilizes m separate production processes in
order t6 produce n difrerent broducts is attempting to maximize
total receibts from the sale of thes®e products subject to the
.congtraint that each production process is not operating
above capacity. Here the decision maker is attempting to
‘set opti@al levels of product output. Dantzig developed the
simplex algorithm to solve this linear programming problem;
and sincé that time the mﬁdel has satisfactorily been applied
t9 not only production problems, but to problems in the areas
of transportgtion,'agriculturé, and dietetics, just to name
a few, |

- Although the linear programming model has been concep-
tually useful fo? planning in mahy areas, it haz a major

drawback. The coefficients cj, alj and bi are asgsumed to be

known cohstants,_whereas, in reality, they may neither be

1 ' .
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known nor constants. Since the model 1s utilized to select
some future course of action, the estimates on these coef-
ficlents would “e hased on rfome prediction of future conditions,
Information used in this estimatlon may not be sufficient to
accurately predlct the future values of the coefficients.
Furthermore, the values of the coefflcients could be greatly
influenced by random events which are impossible to predict.
This leads to the problem where some or all of the coeffi-
clents are actually random variables. One approach of
handling this problem would be to obtain estimates of the
means of the random coefficlents and to use these estimates
in the linear programming model, Certainily such an approsch
will give thé declsion maker some insight into his problem,
but it completely ignores the random nature of the problem
and suppresses the uncertainty that the decision maker faces,

However, under this approach a good analyst would perform

sensitivity analysis on the model; and this would give the

decislon maker some insight into the uncertainty he faces,

But it can be safely assumed that as the number of random

P N——————

elements increases, the sensitivity of the solution to the

model also increases, thus decreasing the value of the solu-

tion to the decision maker., However, there are other ap-

proaches that analysts can take when attempting to apply the
linear programming model to situations possessing a high level
of uncertalnty.

Several approaches to the problem of mathematical pro-

gramming under uncertainty have been developed. One approach,

g = et e A AT R T 3

g e
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developed by G. Tintner, is called "stochastic linear pro-
gramming" and deals with the probability dlistribution of

max Ej : 1 chJ. A second approach, developed by G. Dantzig,
is called "linear programming under uncertainty“. This

approach has successfully been applied to multi-period prob-

lems where a decislion 1s made each period after the values
of some of the random elements become known. A third approach
was developed by Charnes and Cooper and is called Chance-
Constrained Programming. It has the mathematical feormulation
max f(xl; soey xn)
subject to PEZJ n L 8y5%y S b, ]2l -ay;1=1,2, ..um
xJ 20; J=1, 2, seen,
where again xJ is the j-th decision variable, and the aij
and bi may be random variables., In this case the objective
function, £(xy, sssy X,), 15 an attempt to quantify the de-
cision maker's goal in terms of the decislon varilables, Also,
Pz, 1 1 844%y S p;] 21 - a; is interpreted to mean that the
probabllity that the i-th constraint is violated is less than
a,, an appropriately chosen number between zero and one, If
f(xl, eesp X,) 1s a linear function, one can see that the
formulation of the chance-constrained model closely resembles
the linear programming model, but it changes the i-th con-
straint from a linear inequality into a probability statement,
thus recognizing the uncertainty assoclated with the problem,
There 1ls an important distinction between the chance-

constrained model and most other constrained optimization

problems since the violation of the constraints is permissible
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in the chance-constrained approach. One may question the
merit of allowling a constraint to be violated, but it can be
demonstrated that thls 1s a valuable practice when dealing
wlth problems whica contain elements subject to random
variation. To illustrate this point, suppose one 1ls pro-
ducing a product with the constraint that the random demand
for that product must always be met, i.e., demand is met with
probability one., PRut such a policy says that the probability
that production exceeds demand is one or very close to one,
and if the variance of this random demand is large, over
production may alsc get large causing storage costs to rise,
thus cutting into profits. The chance-constrained pro-
gramming approach to this problem would permit the declelon
maker to specify the level of risk of not meeting demznd that
he 1s willing to face. Thls is done-by choosing an apprc-
priate Gye It is in this light that one sees the value of
using the chance~constrained programming model, since it
forces the decision maker to recognize the risk he faces and
allows him to choose the level of risk he feels appropriate
for the problem,
Consider again the i-th chance-constraint which is

written as

P[EJ : 1 815%; < bi] z 1 -a.
Since the aiJ and ‘bi may be random variables (it is assumed
that there is at least one random variable in each chance-
constraint), it is clear that the chance-~constraint cannot

be directly utilized in solving the chance-constrained

5
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programming model. It is then necessary that one transform
the chance-constraint into a determinlstic equivalent
constraint which 1s free of any random variables before the
model can be solved, Most of the literature written in this
area has addres:ed this problem, but 1ln many cases, the
authors made assumptions about the probablility distributions
of the random variables aij and bi‘ These assumptions have
limited the applicabillity of their deterministic equivalent
model.,

The Problem

Je. K, Sengupta and S. M. Sinha have utilized the
Chebyshev inequality in chance-~constrained programming. The
inequallty has a particularly useful characteristic in that
it holds regardless of the probability distribution of the
random variable being measured. The-purpose of this paper

is to utilize the Chebyshev inequality to develop deter-

ministic equivalent constraints for single chance-constraints

and jolnt chance-constraints, a concept developed by Miller
and Wagner. Th2 model developed will be general in that it
will allow any of the coefficients to be random variables
with unknown probability distributions. The model will then
be applied to the economic problem of input-oufput analysis

to demonstrate its usefulness to the decision maker.

Qverview

Chapter II of this paper will illustrate some of the

approaches .hat other authors have iaken in solving the

Al il S O] B, .l L sl
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chance~constrained programming model, The assumption will
initially be made that the probabllity distributions of the
random variables involved are known. Then determlinlstic
equivalent constraints will be developed. This assumption
will then be relaxed. Also, Miller and Wagner's concept of
a joint chance-constraint will be reviewed. Finally, J. K.
Sengupta'ls approach to chance-constrained programming which
utilizes the Chebyshev inequality will be reviewed.

Chapter III will extend the use of the Chebyshev
Inequality to give deterministic equivalent constraints
which can be used to solve the most general case of the
chance-constrained programming model which has both single
and Jjoint chance-constraints,

Chapter IV will then apply the results of chapter III
to the economic problem of input-output analysis. The
input-output analysis model wlll also be modified to show
how it might be of use to the Alr Force and other Department

of Defense planners.
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Chapter 1I

Historical Developments

The chance-constrained programming model 1is normally
formulated as

max f(x), see, X,)

subject to P[E? -1 8355y 2 blzl-a, 1=1,2, o, m
xJZO J =1, 2, seey n, (1)
where the xJ are the non-stochastic decision variables, the
aiJ and bi may be random variables, and the oy is an appro-
priately chosen number which lies between 0 and 1. The i-th
probabilistic constraint allows that constraint to be vio-

lated with probabllity a3 hence &, represents the allowable

i
risk which the decision maker chooses to face. This formu-
lation additionally requires that the n decision variables
all be non-negativ:, which is generally the case for most
economic problems. However, one could easily restrict the
feasible region of choice for the decision variables by
including other non-probabilistic constraints in the form of
linear inequalities, where constants and the coefficients of
the declsion variables are non-stochastic,

As formulated, the chance-constrained programming model
cannot be directly solved, but each of the probabilistic

constraints must be reduced to certainty equivalent or

deterministic equivalent constraints. This is accomplished
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by using the means and varlances of the random variables
given in the chance-~constraint and developing certainty
equivalent constraints which are usually in the form of non-
linear lnequalities. Before investigating some of the
approaches taken by various authors in thls area, a few
words shouid bhe said about an appropriate choice for the

objective function, f(xl, ess) xn).

The Objective Function

In choosing an objective function to be used in the
chance-constrained programming model, an analyst should
attempt to quantify the declsion maker'!s major objective,
This usually glves some mathematlcal function in terms of
the decision variables, Xpr veey X It is seen in the lin
ear programming model that the objective function is given
by

max E? =1 C%p

and this objective function could carry the interpretation
that the firm is attempting to maximize receipts from the

sale of gonds produced. Here cJ represents the market price

for product je. This certainly appvars to be a logical

choice for & firm's major objective. Clearly, this objective
function can be utilized in the chance-constrained pro-
gramming model. However, since the firm is operating in an
environment of uncertainty, it appears quite likely that

some of this uncertalnty will be encountered in the market;

hence each price, cj, could very possibly be a random
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variabie. It would be amblguocus to deal with max E? = 1 chJ
when the oJ are random varliables., As is the case with the
probabilistic constraint, one must develop a certainty
oequivalent expression for recelipts in order to use maximum
receipts as the objective function. Since receipts are nor-
mally a linear function of the decision variables, and
programming algorithms using a linear objective function
deal primarily with a relative weighting of the decision
variables, it seems logical to utlilize the expected value of
receipts as the appropriate objective function. Since the

decision variables are assumed to be non-stochastic, this is

given by
E(E] _ ) eyxy) = £ _  Eley)xy,
where E(cj) is the expected market price for product j. The
chance~constralned programming model-which uses this ob-
Jective function is referred to as the YE Model', a term
given by Charnes and Cooper, the developers of the model,
Use of the E Model will be satisfactory if the decision

maker or the firm has a linear utility for wealth, but, in

reality, most lndividuals have a diminishing marginal utility,

The logarithmic utility function is a good example of this,
Therefore, Af the decision maker does not have a linear
utility for wealth, the analyst must use some function which
represents the expected utility of profits as an objective
function, Since profit is a random variable whose distri-
bution may be known or unknown, it might be difficult to

obtain an expression for the expected utility of profits.

10

N

e i
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utility function,

However, due to the arbitrary naturc of most utility func-
bound as the objective function in place of the expected

tions, it would be permlssible to ugse a tractible 1l wer

Re A, Agnew, [2] and [3], has developed
such bounds, and they depend only on the mean and varlance
of random profits,

The chance-constrained programming mcdel
vhich uses a bound for the expected utility of wealth can
(1], [25], ana [26].

readily be applied to the problem of portfollo selectlon

Suppose the decision maker 15 more concerned with

minimizing the random fluctuations of receipts, as opposed
to maximizing expected receipts.
would use min Var (2? =1 Cy%

In this case, the analyst
J
Fortunately, this variance function is a positive semi-

) as the objective function,

set.

definite quadratic form with respect-to the decision vari-
ables, which means a global minimum can be found for this

Cooper,

function if the decislon variables are confined to a convex
thls objJectlive function is normally called the "V Model®, a

The chance-constrained programming model which uses

term originated by the developers of the model, Charnes and

il

Realistically, one would not usually see the V
Model used without an additional constraint that expected

receipts are greater than some specified level that the
decision maker feels ls satlisfactory.

Charnes and Ccoper developed another chance-constrained
programning model which they called the "P Model",.

In this

case the decislion maker determines some satisfactory level
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of recelpts, call it 2, ond. then attempts to maximize the
probability that receipts arc equal to or greater than this
level. The& authors call the utilization of this model
satisficing, a term developed by H., A. Simon, Mathematically
this can be expressed as
max P[E? = 164% 7 z].
This model may teke on a different interpretation if one
considers Z to be the minimum acceptable level of receipts
or, as some authors call it, the "disaster level". 1In this
case, the objectlive is to minimize the probability of ruin or
min P[Z‘Sl -1 0%y < z].
Neither of these expressions can be used as a deterministic
objective function to solve the model. If one defines the
functions
ng = 2? -1 E(cr.j)x'j and o ® = Var (E? e 1 cjxj),
it can be shown that 1t is mathematically equivalent in both
these cases to maximize the following certainty equivalent
objective function
g - 5)/00.

provided that the cumulative distribution function of
(E? =1 %)%y - uo)/co is strictly monotonic, This objective
function would be utilized if the decision maker's major
objective 1s to minimize the risk he faces and is usually
referred to as the safety-first approach.

Along these same lines, Kataoka [22] proposed a slight
modification to the above model which has also become known

as the safety-first approach. This model is formulated as
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max 2
_‘rl -
subject to P[Lj - 1 Sy%y < 2] € a.
This can be shown to be mathematically equivalent to maxi-
mizing
-1
N, + F (a)oc, g
where F 15 the cumulative distribi mion functlion of the
random variable (2? =1 cjxJ - po)/oo.
It can be clearly seen that the analyst has a great
deal of flexibllity in modei  ;, the decision maker's atti-

tude by using one of the above objective functions and using

others to make realistic constraints.

Development of Determinisilc Constralnts

Having chosen an appropriate objective function, the
analyst must now transform the probabilistic constraints
given in the chance-constrained programming model into deter-
ministic or certalnty =quivalent constraints. Consider the
i-th constraint from (1), which is given by

P[E? = 1 855%; < b1] 21-a,.
Let y, = 2? -1 835%; - by By = E(y,), and 0,® = var (y,).
Remember that Uy and. oif are nonstochastic functions of the
declision variables. Assume that there 1is at least one
random variable in each constraint, which means that 01' > 0,
and that the random variable Yy has a known probability
distribution with finite mean and variance, Using these
assumptions the model can be transformed into the following

deterministic equivalent model*:

*See Appendix A for the mathematical development.
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max f(xl, vesy X))

subject to ny + Kl - ai vy <90
vf-c!l";:o 1i=1,2, vsu, m
-. Vlao
X, 20 3=1,2, «eu, n, (2)
whersa ny and of’are defined as above and
-~ 1 .
Kl—ai—Fi (l‘ai)’

F1 represents the cumulative distribution function of the
random variable (yi - #4)/9,« When one utilizes either the
E Model or V Modei objective function, (2) yields a convex
programming problem, and there are algorithms available to
solve this problem, If one utilizes the P Model objective

function, the problem is not quite as tractible., Remember

that the certainty equivalent objective function for the P
n
), both functions of the decision

?if Model is given by max (pu - .:7:)/0° where n, = E(Z
variables, Utilizing this, the deterministic equivalent for
the P Model chance~constrained programming model becomes:

max vo/wo

subject to uo -Z - v

(LY V)
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In this case the objective function vo/w0 is ncithef
concave nor convex. But the problem can be solved uglng
fractional programming techniques, and as a consequence of
the theory in this area, a local maxima will.in fact be a
global maxima for linear fractional functionals,

If the random variables, Bi1r *eer Byp bi’ have joint

can be found in

normal distribution, the value for Kl a
B |

the cummulative tables of the standard normal variate, How-

ever, if the random varlables in each constraint have arbi-

trary distributions, Yy may still be approximated by the

normal distribution since some version of the Central Limit ;

Theorem may hold., This theorem holds under weak condiﬁions ‘

for independent random variables ahd under stronger condi-
tions for dependent random variables#*, Suppose the distri-
bution of vy is not known and the Central Limit Theorem' !
cannot be applied to y,. Hillier [18] suggests using the
one-sided Chebyshev inequality which gives [ (1 - ai)/hij%‘ ,

as an upper bound on Kl y and this value can be used in
|

..G.i

the deterministic models (2) and (3).

Joint Constraints

The concept of a joint chance-constraint was first
introduced by Miller and Wagner [24]. In this case the

model is formulated es

*For a survey of conditions under which the Central Limit

Theorem holds, see Hillier, [20].

o 1 i s, e e
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| : ' :
max f(xl, XN xn) s

v

m ren
subject to PO 1 [23 =1 B15%y < bL] 1-a

1= ,
( xj 2 0 j = l’ 2’ e o0y n.
I
In this formulgtion,'all of the chance-constraints from (1)

are jéined tbgether int'o one joint constraint, This formu-~

- lation carries the ipnterpretation that the probability that

ahy of the m constraintsvié violated is less than a, an
appfopriately chqsen number beéween zefo and ocne., In thelr
d;vel?pment,'Miller and Wagner first assume that all the aij
are non-stochqstib and that.'b, and by, i # k, are stochas-
ﬁicaily independent random variables with known, continuous
diseributions; This imﬁlies that the joint chance-constraint
¢an be ;epresented as | |

m m
POy -1 [2? = 1 B43%y s bij =T - 1 P[Z? = 1 235%j < bij‘

Letting Fi(.) represent the cumulative distribution funce.

ion of the random variable by, they define
| Gi(bi) = 1 - Fi(bi)'
Their model can then be e;pressed as the following nonlinear
programming problem:
, .
max f(xl, ..O, xn)
‘1 J - l ainJ s 0 i-= l’ 2’ * 90y m
1 ! 1 3
m . -
M= Gylvy) 2l-a |

!

XJZO J_’:l, 2, esey N, ;

. . ! ;
Notice in this case that vy is unconstrained in sign, and

. = m = - -
-vi.+ 2? =1 aijxg =0 or W, _ Gi(vi) 1 &, but gen

erally not both, If ﬁ? =1 Gi(vi)'is a concave functlion,
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then a global optimum can be found by using some nonlinear

programming algorlithm. The major portlon of Miller and

Wagner's paper addresses the question of when nT -1 Gi(vi)

1s concave. They could not develop conditions which are
m 1 »

i=1 Gi(vi) to be concave; however, they
were able to determine that it wlll not be concave when all

sufficient for n

the bi have normal, gamma, and uniform distributions. But
1f one makes the following transformation
the constraint defines a convex region when the distribution

of each b, is uniform or normal, This transformation also

i
works for the gamma and Welbull densities, when their para-
meter 0 ls greater than one, 1In this case the model 1is
formulated as

max f(xl, ceey xn) -

subject to -v; + E? =1 aijxj <0 1=12,2, «¢sym

2] o110 G(v) 21n (1 -a)
xj 20 J=1,2, ¢eey n.

The above arguments can be directly appllied to the case
where one has several joint constraints if each constraint
appears in only one joint constraint; that is, there is no
constraint, ﬁ? =1 aijxj < bi’ which appears in more than
one Joint constraint.

Miller and Wagner also consider the case where all the
aij have normal distribution and the b, are non-stochastic.

i
Again the assumption that all random variables are stochas-

tically independent is made., Let Yy = I? =1 aijxj where
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My = E(y;) and 01’ = Var (y;). In this case, the joint
conatraint becomes

pi.+vioiabi i=l’ 2’ llo’m

.1 nG(v,) 2 in (L -a)
where G(vi) =1 - F(vi); F(.) 1s the cumulat've distribution
function of the standard normal variate, Clearly, these
constraints do not define a convex region, so any algorithm
which solves this problem may give only a local optimum and
not a global one,

Safety-~Flrst Approach to
Chance-Constrained Programming

An approach to chance-constrained programming is avail-
able in the safety-first principle which is best deseribed
by A. D. Roy, [28), when he said, ",..it is reasonable, and
probable in practice, that an individual will seek to reduce
as far as 1s possible the chance of such a catastrophe
occurring." Roy defines a catastrophe as an event where an
individual makes a net loss on some investment or venture.
Such an approach can be expressed as the "P Model® of the
chance-constrained programming problem which 1s formulated
us

min P[Z? -1 5% S 7]
subject to P[E? =1 234%y S b11 z2l-a, 1=1;2, s0s,m

x, 20 J=1,2, onogn,

3
where Z 1s the '"disaster level" of receipts.

J. K. Sengupta [29] has applied the distribution free

Chebyshev inequality te this problem by using an approach
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somewhat different than those previously revieswed in thls
chapter., In his appro’.nh, Senpupta uses an idea attributed

to Thell where there ls a penalty cost agssoclated with each

T TATTRPN. ST A T R "R Y e

constraint, This penalty cost is only appllied when the

.o e g

constraint is violated. Also, there 1s a penzlty cost which
' ' ls applied whenever receipts are less than or equal to the
; disaster level, Z. Sengupta then defines a "iew objective
function which can be called total expected penalty costs,

thus transforming the constralined problem into an uncon-

strained minimization problem, In this approach, the de-
cisior maker must be able to assign a realistic penalty cost
to each constraint.

To quantify this, let h be the unit penalty cost to he

applied whenever Z exceeds E? =1 chj, and ki be the unit

penalty cost to be applied whenever i? =1 aijxj exceedé bi‘

?; , Sengupta assumes that the a;; are non-stochastic constants
| and that the ¢; and by are continuous random variables
§ defined on a non-negative raunge, He defines C(xl, vae) xn)

0 be the expected penalty cost assoclated with the original

| objective function and C;{(x;, ..., X;) to be the expected
! peralty cost assoclated with the i-th constraint, The prob-
le can now be expressed as
m
min C(xl’ ® e xn) + Ei = l Ci(xl, LI B Y xn)
subject to xJ 20 J=1, 2, seey N,

The expected penalty cost associated with the i-th constraint

would be glven by

8
- i,
Cylxyy eonr X)) =Ky [, (5, = ;) (b)) ab,,
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_ yn .
wherc 8y = LJ = ] ainJ and fi(bi) 18 the probability denslity

function of the random variable bi' If bi has unknown dis-
tribution, this integral Jould be lmpossible to evaluate,
However, Sengupta uses the Chebyshev ineguality to obtain an
upper bound for the integral, and the bound can be expressed

as
n 2 2
Gi(xl' L L) xn) = ki(zj - l aljxj)oi /Pi L
3 _ - n
where 0,° = Var (bi) and py = E(bi - EJ =1 aijxj)' Simi-
larly one can derive an upper bound on the expected penalty
cost assoclated with the objesctive function,

C(xl, ee 2y xn) s h 2 Ooa/(po - 2)8,

3 _ ) , - Tl
where o ° = Var (23 =1 chJ) and p. = E(Zj -1 cjxj).
Follewing the safety-first approach to chance-constrained
programmning, Sengupta would then solve the following problem

- a - m - 3 2
min h 20,7/ (g - 2)7 + Ey g kg (Ey g ay %007/

)3
SUbJeCt to x‘j 2 0 j = l’ 2’ LA LN 1 n.
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Chapter III

A Distribution Free Approach to
Chance-Constralned Programming

In the last chapter, some of the developments in the
theory of solution techniques for the chance-constrained
programming model were reviewed. This included the intro-
duction of the concept of a joint chance~constraint. Also,
it was demonstrated how the distribution free Chebyshev
inequality can be utilized to give deterministic bounds on
probabilities which c¢an be used in the safety-first approach
to chance-constrained programming,

To continue in this fashion, thls chapter will be
concerned with the utilization of the one-sided Chebyshev
inequality to give deterministic constraints which can be
used to solve the chance-constrained programming model which

has both single and joint chance-constraints, Miller and

Wagner's development of the joint constraint requires inde-

pendence of the random variables involved, whereas the dis-
tribution free techniques developed in this chapter will

ﬁﬁ . relax this restriction. The concepts outlined in this

:gg‘ , chapter are developed from ldeas glven to the author by

R. A. Agnew; therefore, all credit for the development
should be given to Dr. Agnew.

Before proceeding to the development of the distribution

free techniques, one should consider the form of the one-

21
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slded Chebyshev inequality to be used in this development,
It is taken from Feller [16]. Given a random variable x
with E(x) = 0 and Var (x) = o, and given any t 2 0, then
P(x > t] s 0%/¢a® + t2),

Proceeding to the development of a dlstribution free
deterministic equivalent program for the chance-constralined
proramming model, let (N, @, P) be a prcbability space and
let [y, = y4(Xq) ovey x,®), 121, 2, +u., m] be a family
of random variables from this space which are defined in
terms of the non-stochastlc decision variables. Assume that

E(yi) < = for feasible x,, that E(yi) ;'. 1s concave and

’ i
Var (yi) = 0; 1s convex gor feaszible xJ. ne must remember
that m, and o7 are functious of the decision variables,

X1s ooy Xpo Clearly, these assumptions hold when one deals

with linear chance-constraints, With this notation in mind,

the chance-constralned programming model can be expressed as
max f(Xy, eeey X,)

subject to Fy, 20] 21 -a, 1=1,2, o, m

paf _ [y, 20121-«

Xy 20 J=1,2, «ouy n, (4)
where £ is some concave function and a, ®ys eeey @ are sult-
able elements of the interval (0, 1),

In this particular formulation, there are m single chance-
constraints which are also combined into one joint constraint,
Thie model is tormulated in this fashion for ease of devela
opment and presentation, but it can he generzlized to handle

any number of single and joint constraints by directly
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applying the concepts that will be developad.

Using the one-sided Chebyshev inequality and the sub-
additivity property of the probability measure, one can
transform the chance-constrained model, (4), into the fol-
lowing deterministic equivalent model:

max f(xl, ceey xn)

subject to ti < ay

uizo 1=1, 2’ -oo,m
Zy o1ty Sa
X320 J§=1,2,...,n, (5)

- 3 2 2
where ty =0, /(oi + 1y ) S ¥
The problem as formulated may have no feasible solution
for arbitrarily stipulated a, Gy esey Qoo However, one can

obtain a suitable set of a's by first solving

min ZT =1 Yy -
subject to t, < u, 1=1,2, (v, m
My 20, u, 20
xJ 20 J=1,2, ..., n, (6)

and then putting ET =1 ui* < a, ui* S ay where ui*, tesy um*
1s an optimal solution of (6).

If one combines (5) and (6) into one problem and adds
variables to make the model computationally more tractible,
the deterministic equivalent chance-constrained programming

model becomes

mox (X1, ..o, x,)

**Mathematical development is contained in Apnendix A.




GSA/SM/72-15

subject to ny 2 WyVy
‘.13 2012
uy (W + 1) 21 1=1,2, 00, m
Uy Sy
ET -1 Y Sa
Ugy Vyy Wy 2 0
Xy 20 J=1,2, «us, N, (7)

Unfortunately, the above constraints do not define a
convex region, so the problem is not a convex programming
problem. This means that any nonlinear programming algorithm
used to solve this problem may converge to only a local max-
imum and not to a global one. PRut fortunately, the constraints
and the objective function are dlfferentiable, which means
that there is a nonlinear programming algorithm which can be
used to find a local maximum [17]. Furthermore, it will be
assumed that the declsion maker, who is trying to optimally
achleve his objective in an environment of uncertainty and
risk, will be satisfled with a locally optimal choice for the
decision varlables xJ; at least, until a better choice can
be found,

As mentioned previously, this model can be generalized
to handle any number of single and joint constraints. Suppose
one has the chance-constrained programming model with only
single chanc:-constraints. The analyst would utlilize the

deterministic model, (7), except he would delete the constraint
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If the model were given with only the joint chance-~constraint,
the analyst would delete the constraints
uy < ay for 1 =1, 2, ..4, m,

Specifically, (7) can be applied to the linear chance-
congtrained programming model with both single and joint
constraints. In this case, the model would be formulated as

max f(xl, veey xn)

subject to P[E? =1 843%y S b, ]

v

1"'“1 i=l' 2, .c.,m

l -0

w

PRy _ o [E) o) ayy% s 0]

xJEO J=1,2, esey N,

Then, the ¥;, Ny, and.ai?would be given by

_ n
¥y = b1 - EJ =1 aijxj'

n
= E(bi) - ZJ -1 E(aij)xj’ and

n n
0,% = EJ =1 I 4 COV (aij' aik)xjxk

j -
=
i

-ZE? =1 °ov (aij’ bi)xJ + var (bi)'

If one has estimates of the means, variances and covariances
of the random variables lnvolved, they can be put into these
equations and substituted into (7). Moreover, if estimates
of the covariances are not known, one can use the following
bound

g, € Z? - 1 (var (aij))é xy 4 (var (bi))*;
in the constraint via 2 Oia(x) to get the following constraint

n % 3
v, 2 23 - 1 (var (aij)) Xy + (var (b,))=,
Although in some cases the Chebyshev inequality may

give a rough bound on a probabillity measure, it hag a
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desirable property that it holds regardless which probability
distribution the random variables involved may have. The
inequallty is particularly useful when adapted to sums cf
random variables which 1s the case with the linear chance-
constralned programming model., Furthermore, it has been
demonstrated that the inequality can be used to develop a
deterministic equivalent model which can solve the most gen-
eral case of the chance-~constrained programming model which

has both single and joint chance-~constraints,
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Chapter IV

Chance-=Constrained Input-Qutput Analysis

Now that a distribution free, deterministic equivalent
model for the chance~constrained programming model has been
developed, attention will now be turned to the area where
this model will be appllied--Leontief'!s input-output analysis,
Input-output analysis is well sulted to the chance-constrained
programming approabh since input-output analysis, in 1ts
simplest form, i1s a linear programming problem where the
constants and coefficlents of the model are random variables,
usually with unknown distributions., Therefore, the chance-
constrained programming approach will glve the decislon
maker everything the normal approach to input-output analysis
gives, plus further insight into the risk and uncertainty
that the decision maker faces. PFurthermore, it will enable
him to directly control some of thls risk. Before proceeding

with the development of a chance-constrained, input-output

model, a few words will be said about the theory of input-

output analysis.

Input-Output Analysls

Consider an economy which has n sectors where each
sector is producing one, and only one, distinct product.
Qutput from any particular sector may be needed as an input

for itself and for other sectors, Furthermore, the open
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model will be consldered, which allows outslde demand to
occur; this could be interpreted to include consumer demand,
demand generated by the government, and demand for export.
Also, assume that there is a finite labor supply and that
each sector demands labor in order to produce goods, In
order to have a viable economy, total production of product
i must be greater than or equal to the total demand for
product i, which includes outsidr demand and the demand from
each sector, Furthermore, total demand for labor must not
exceed the total labor supply.

To quantify this, let Xy be the total number of units
produced of product i. Let 8y 4 be the number of units of
product i needed to produce one unit of product j. Also,
let 863 be the number of units of labor needed to produce
one unit of product J; L represents £he total amount of labor
avallable in the labor market. Finally, let Di represent
the outside demand for product i. The production and labor
constraints can now be represented as

X, - E? 1 84% 8D 1=1,2, ..., n
5:? - 1 8p5%; S Le

Letting cy be the production cost of product i, the
input-output analysis model can be represented by the fol-
lowing linear program

min B

3 =1 %%y

n
subject to Xy EJ =1 aijxj

n
j=
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This model, as formulated, can be interpreted to mean that
economic planners are attempting to minimize production
costs, subject to the constralnts that production in each
sector exceceds total demand and that total demand for labor
does not exceed the total labor available. . | ‘

Leontief's model is important since it recégnizes that
a very conslderable portion of the effort of a modern econom&
is devoted to the production of intermediate goods, and the' :
output of intermediate goods is closely linked to the outﬁutl
of final products: Therefore. a change in thre level of
output of some final product can cause widespread. changes X
throughout the economy in the level of productioﬁ of inter-
mediate goods. In other words, input-output . analysis .
describes a national economy as a system of mutually inter-_' ,
related sectors or interdependent economic activities.
This interrslation actually consists of flows of goods and
services which directly or indirectly link all the sectors
of the economy together. Leontlef's approach ls particularly
important since it highlights this interdependence of the
economic sectors. Ancther important feature of quntief's
model is that it is strongly dependent on empirical investi-
gation, |

The model has been successfully applied to the Uniﬁed
States economy, and large tables have been constructed'whiéh
show how goods and services flow throughout-the U, S, econ-
omy., The model can be of <reat use for economic ﬁlanning in

developing nations since it can be utilized to predict thé

29
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*useful® production capability of that nation. In the same

iight 1t can be used for planning optimal levels of econ-
omle rnowth.’ Furthermore, the model can be an ald for
economic planning in military mobilization problems,
- 'Although Leontiéf developed the model for a large
aconomip system, 1t can be readily seen that input-output
analysia can be appiied tosprgblems much smaller in scope.
The model can be applied to any qrganigation or system that
is composed of' components which supply goqds and services to
ather'components within the organiaation or system. Fur-
therimore. these goods and sertices may bé supplied to
dectivities outside 'the organizatioh. Clearly, this would
include large manufacturing organizations and a military
activity like the U. S. Alr Force.
" Baumol [5] points out two simplifying assumptions made
in input-output analysis which have come under criticilsm,
One 1is the assumption that each sector manufactures only one
homogéneous-product or good. This restriction may be relaxed
gomewhat by interpreting this product as a composite commod-
ity. The second and more restrictive assupption made is
that all inputs needed in the manufacturing of a unit of
output are utilized in,fixed proportions., This does not
aliow thelpossibility of trade-offs or substitution of
inputs, ;Cleafly, a&option of the chance-constrained approach
will rglax this second assumption.
Anoth;r drawtack against using input-output analysis is
that a greatlamount of statistical effort must be expended

, 30
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in order to come up with timely forecasts of demand and
estimators of tne technical coefficients, aij' It might be
pointed out that this statistlcal effort could also provide

an estimation of the variance of these estimators without

mach greater effort belng expended.

The Model
The chance-constrained, input-output analysis model

will now be developed, and it deviates from the usual eco=-
nomic interpretation since two military units will be
considered as the economic sectors, These will be an air-
1ift command which will represent sector I and a logistics
command representing sector II, Now sector I, the alrlift
command, provides a service whose unit of measure 1s a ton
of materiel/personnel transported. Sector I provides this
service to itself, to sector I1I, and.to other military
activities., Likewise, sector II provides a product whose
unic of measure is a ton of materiel supplied. Again it
uses the product itself, and the product is used by sector I
and by other mllitary activities,

To quantify this problem, let X3 represent the total
amount of alrlift support provided by sector I. ILet 813 be
the random variable which represents the amount of airlift
support required to supply one ton of materiel/personnel
transported, and a8y, represents the random amount of airlift

support needed to provide one ton of materiel supplied. Let

Dl represent the demand for airlift support by all other

s
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21 820 and D2 be the

random demands for logistic support, and let X, be the total

military actlvitlies. Similarly, let a

amount of logistic support provided by sector II. To
restrict the model, assume that Xy and x, are non-stochastic
decision varlables., This is not too an unrcallstic assump-
tlon if one interprets Xy and X, to be the upper bound on
the alrlift and loglistic support that decision makers are
willing to provide. Furthermore, let ¢y and ¢, be the random
unit cost in thousands of dollars of airlift support and
loglstic support, Let 100 be the number of manhours required
to provide one ton of materiel/personnel transported, 50 be
the number of manhours required to provide one ton of mater-
lel supplied, and 650,000 the total number of manhours
avallable to both the airlift commend and the loglstics
command, Finally, assume that declision makers require that
the demand for a%rlift support will be met with at least
probabllity .95; also, they require that the demand for
logistic support will be met with at least probability .9.
Lastly, decision makers require that the total demand for
bot). airlift support and logistic support will be met with
8t least probability .9,

The chance-constrained, input-output analysis model is
now given by

min E(clxl + 02x2)

subject to P[(1 - a)7)%) = 8;,%, 2 DlJ 2 .95

Pl-8,,%; + (L - a,,)%, 2 D] 2 .9
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E o |1 -2 - PN L . 9 3
E ~ay, 1 - 32%} X, Dg‘ Pﬁ
' - 100%; + 50x, < 650,000

X1r X z 0,
where the objective is taken to be the minimization of

expected costs,

Suppose statistical analysis gives the following values

for estimators of the mean and variances of the above random

T T TR

.

variahles.

Random Variable Mean Variance
¢y 35 5 |
? Cph 25 3 |
5 a3y 25 .0025 ;_
g 239 3 » 0009 P
f 851 15 _ .0001 '
f 8, .2 . 000k
f 2N 1000 10,000
f D, 1500 12,000,

and the covariances are given by ]

.. ) = “.0009

! 8110 212

~: ag = -.00010
. 8210 822

: All other covariances are zero.

) Followi g the non-stochastic approach to input-output

analysis, Derartment of Defense planners would take ithe esti-

mators of the means of the random variables, and solve the

following linear programming model.
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min 35x1 + 25x2

1000

w

subjact to .75xl - .3x2

-.lfixl + .31.? > 1500

. X3y X, >0
g Solvirg this problem, one obtains the solution X, = 2254 .252
) and Xy ® 2297 .297, which gives total expected c¢ost of

$156,261,300, Not much can be said about this policy since

there 1s no measure of the risk associated with its adoption,

Application of the Chebyshev inegquallity gives zero as the
lower bound of the probability that the total demand for

Likewlse, zero is the lower

alrlift support will be met.
bound of the probability that the demand for loglstic support

will be met. Such a policy should not have much appeal to

decision makers since they are faced_with an undetermined

amount of risk,
Using the estimates, the deterministic equivalent for

the chance~constralned, input-cutput model is given by

min 35x1 + 25x2

subject to .75xl - .3x2 ~ 3000 - Wyvy 20
n.15x1 + 98x2 - 1500 = LA 20
2 3 e 3 .

w

2 2 3 .
- .0001xl - .000‘+x2 + .OOlelx2 - 12000

2
ul(w1 +1) -1

. v2

"w

-]
uz(w2 +1) -1

ooy
o o O O ©

[4
NF - ul

1l - Uy
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0

ol = u1 - u2

Xys X5y Uy Uny V9, Vos Wy W, 20
Using Flacco and McCormick's nonlinear pregramming nlgorithm
[17] to solve this problem*, one gets X; = 3909.8 and
X, = 3310.4 as the solution which gives $219,603,000 as the
expected cost, What else can be sald about establishing
this level for the decision ariables? One can say that the
provabllity that the total demand for airlift support wiil
be met is at least .95, and the probability that the total
demand for logistic support will be met is at least .9 (in
fact, it is at least .95), and the probability that total
demand is met is at least 9. Clearly, much of the uncer-
talnty assoclated with the previous policy has been eliminated.

Since some of the advantages of. using the chance-

constrained model have been stated, the major disadvantage
must also be pointed out. One desirable feature of the
Chebyshev inequality is that it holds regardless of the
distribution of the random variables being measured., But
this feature can clearly work against anyone using it in the
above model, since it can induce a decision maker to select
a more cautious policy than one he might normally select.,
This actlon would most certainly increase his costs., To see
this, one should remember that the Chebyshev inequality is

used to obtaln a lower bound on the probability that some

*Sev Appendlix B,

35
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particular congtraint be met. If this lower bound is set

equal to some appropriate number, say .JY5 for example, it

1s quite possible that the true measure of the probability
is higher than this bound. In fact, the true probablility

could be extremely close to one; it 1s in the example, if

one assumes that each constraint has an underlying normal

distribution,

This undesirable feature must be consldered the price
one must pay for not knowing the distributions of the random
variables associated with the model. As with any model, it
dones not answer all questions that a decision maker might
have concerning the uncertainty he faces; however, 1t cer-
tainly gives him insight into his problems. Also, the model
may be reformulated to be of greater use to the decision
maker. Such a formulation could be

min ul + u2
1l -

W
(w
[
L
N

subject to P[(1 - aj1)%; - a1p%, 1

2

1w

-
P[-a21x1 + (1= 8a5,)%x, 2D J21-u

(1 - ayy) “alz] [xll . P

X, D2
P[clxl + CpX, S cB]

v

1l -u, -=u
\ )
~ayy (1 = ay,)

w

l-8
6500

1A

Xy + .5x2

Xqy X5y Uy, Uy 2 0,
where the random variables are as previously defined, and Cp
is the budgeted cost ceiling placed on the model. This model
has the interpretation that one is attempting to minimize the

risk of not meeting total demand, subject to the constraint

36




GSA/SM/72-15

that the probability that total costs do not exceed the
budgeted ceiling, i1s greater than 1 - B, Clearly, this
model would be of great value to the decision maker since he
is gaetting the greatest amount of risk aversion for each
dollar he spends, plus he is glven an upper bound on the
measure of the risk that he must face by adopting this pol-
icy.

It has been demonstrated that the chance-constrained
programming model can be applied to the input-output analysis
model. Clearly, a chance-constrained, input-output analysis
model could be developed for the U, S. Air Force and could
be used for budgeting and force structure problems. However,
a competent analyst might ask whether the appllication of
chance-constralned programmin;;, to lnput-output analysis is
contrived. Or he might ask whether the inslghts gained by
using the model are worth the computational burdens that the
model places on him. To answer these questions, he must
consider the advantages of using the model, One major
advantage ls that ls forces the declision maker to recognize
the risk and uncertainty that he faces, and it gives him a
direct control over some of this risk, Furthermore, the
model is "dlstribution free® since the analyst need not know
the probability distribution of the random variables involved;
he only need know estimations of the mean and varlance of
each random variable. The model can readily be used for

budgeting or personnel allocation problems. Finally, the

model is particularly applicable for optimal economic
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planning in organlzations which are comprised of interrelated
groups, where these groups supply goods and services to each
other and to activities outslde the organization, In this
light, chance-constrained, input-output analysis can be

consldered as mathemetlical programming from the systems

management point of view.
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Appendix A

’ Mathematical Development of
Deterministic Constraints

Suppose one is glven the chance-~constraint

Ply, = z? _ 1 8%y = b $0]21 - ay,
where Yy has a known probability distribution with mean
My = My(Xy, vee, x,) and variance oia = °1a(x1’ ceer X))
The problem is to develop a deterministic equivalent con-

straint for the above probvablilistic constraint,
P[E? 1 834%y S b,] = Ply; < 0]

= P[(yi - ui)/oi S —lli/oi] 21 - ai-
This probabilistic constraint holds if and only if

-

1) =Ky o a,’

where F(.) is the cumulative distribution function of the

-pi/'oi > F-l(l -a

0 "
P it e b as A

‘ random variable (yi - ni)/oi. This deterministic constraint
can be rendered more tractible by adding a variable to give
'ui+Kl-0«ivi$0
2 3
Vit = %
. v

v

0

w
<

i

Use of the Chebyshev Ineguality to
Give Deterministic kguivalent
Constraints for Both Single and
Joint Chance<Constraints

Suppose one 1s given the single and joint chance-

constralnts
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Ply,
m
P ﬂi = 1 (yl 2 0) 21 - &,
where E(yi) = p, and Var (yi) = oi°. Consider

Py, z0) =1 -y, <0]=1-Hn -y >nl
But the one-sided Chebyshev inequallty gives. the following

w
v

0] l-ai i-l, 2, .ll.’m !

bound,

P[ﬂi ~¥y > Nij < 013/(01a + uia), provided ny > 0.
This implies that : , -
3 3 3 1
P[yi 2 0] 21~ oi /(oi + ui ). : !
The constraint P[yi >0]>1 - «, holds if end'only if

01'/(01a + uia) S %;. Now consider the joint constraint
p AP (y, 20) =1~ py® (y, <0) '
1 =1 W2 =0y Wy

_ m : ' .
i
which follows from the subadditivity property .of any proba-~

bility measure, Again using the Ché%yshev inequality one has

m m 3 3 3 :
PRy o Uy 2021 -2 40,7/  +n) 2l -0a.
The constraint holds if and only if '

|
R a3 3
B 1% /0 ) se.

Utilizing these inequalities, the deterministic equivalent

t

constraints can be written as

t, €@
1 i i=1, 2, esey M,
By 20 _
ﬁraltisa’

o @ 3 2
where t, =0, /(0i + uy )e

43
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Appendix B

Nonlinear Programming

Thi% section o%tlines the nonlinear programming
algorithm used by the author to solve the deterministic
equivglept, chance-cons?rained, input-output analysis model
in chapter IV, It is Fiacco and MiCormick's interior point,

unconstrained élgorithma To understand its use, consider a

!
ronlinear programming model which can be formulated as

" Min h(xl: veey xn)*
subject to g, (Xy, eeep x,) 20 4 =1, 2, ..., m,
In their ;nteridr point algorithm, Fiacco and McCormick
transform the qonstrained problem into an unconstrained mini-
mization problem by dsing sonme trané}ormation of the form

W(xl, XN xn, l") = h(xl, esey xn)
|

;o "~ 4+ s(r) Z?'a 1 I(gi(¥1’ ceey xn)),
where s(r) is some function of r which has the properiy
s(}) - 0Aasr -0, and I(gi(xl, cony xn)) is some function
of the i-th constraint which has the property I(gi(xl, coey xn))
-~ ® as gi(xl,l..., xn) -~ 0, In solving the problem in chapter
v, th; functions, .3 and I, were tgken as

S(I‘) = r, and I(gi(xl, eo ey xn)) = «ln gi(xl, eeey xn)o

*If one's objective is max f(xl, eses X ), one must define
niXy, eeey x.) = - f(xl, sss; X ) in order to use Fiacco
and McCormick's algorithm,
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This glves the problem
lllin W(Xl, sy xn' P) = h(xl’ evey Xn)

f} ~ 1 In [gi(xl, ceey xn)].

-
Basically, the method of solution 1s to solve this problem
for arbitrary positive r, decrease r (but keeping it positive)
and solve the problem again, Continuing in this fashion,
one will generate a sequence of values
[xi(k)] for 1 =1, 2, veey ne If r'¥) 4 g ag g ~ ©, then

xi(k) - xi* as k ~ow, 1 =1, 2, ,.., n, where xi* is the

i-th element of tﬁe vector x* which is a point that will give
a local minimum to the conscirained problem,

Filacco and McCormick prouve that if the functions
f, E1s seey B, are continuous and if one follows the above
procedure in minimizing w(xl, ceey X r), the sequénce of
solutions will converge to a locally‘optimal vector, x*%*, for
the constr-ined problem

min h(xl, very Xp)

subject to gi(xl, veey, X ) 20 1=1,2, ..., m

n
provided a local minimum exists. If h(xl, ceny xn) is also
a convex function and gi(xl, veuy xn) is @ concave function,
1=1,2, «.., m, the convergence is global, Unfortunately,

this is not the case for the problem in chapter 1V,

The Algorithm

Expressing the constrained problem as the following

unconstrained function
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W(xl, sney xn, r) = h(xl’ eney xn)

- }:T' = 1 in gl(xl, 0s 0y xn)

s i Y

the solution to the constrained problem is obtained by using

the algerithm outlined below,

T e
>

Step 1. An initlal vector x(o) = (xl(o), sasy xn(o)) is
chosen such that gi(x(o)) >0 forl=1, 2, «eu, m,
Step 2. An initial value for ry is chosen, in this case

rl = 1 is used.,

(k = 1)

Step 3. Using x and r,, the function w(xl, seey Xy, ¥

is minimized over n space giving xK) . The steepest

K

descent algorithm is utilized for this purpose,
although the Newton method could also be used.
However, with the Newton method, one must compute
the Hessian matrix of W(xl, coey X r), and ths
becomes impractical as the number of variables and
the number of constraints increases,

Step 4. Terminate computations if the new solution is

acceptable; if not, continue,

: Step 5. Select a new value for Py +1° Tk a1l"® rk/z is

A used in the problenm,

Step 6, Using the new values for (xl, veey xn) and r, return
to step 3. '

g Minimizinz a Function Using the
Steepest Descent Method

The steepest descent algorithm which can be used to
minimize an unconstrained function is an iterative technique

which utilizes only the first partial derivatives. Supposc

146
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one desires to minimize the function W(x, rk) with respect
to the vector x while holding ry. fixed., Using the steepest
descent method, one selects zn arbitrary vector x(o) and
computesVLdb:“”, rk), the gradient vector of W with respect
to the vertor x; then a new value for the vector x is found
by using the lterative relation
1) () A1_Vw(x(i), ) s

where Xi 1s the smallest non.negative value which locally
minimizes W along -V w(x(i), rk) starting from x(i). )‘1 is
usually found by finding an upper and lower bound on it and
thean shrinking the interval of these bounds until they
converge to the desired point,

The algoritnm is terminated when the norm of the gra-

dlent vector is suitably smoall.
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